ACCESSIBLE AND EFFORTLESS MONITORING OF CHRONIC RESPIRATORY DISEASES IN OLDER ADULTS: A DATA DRIVEN APPROACH TO TIMELY INTERVENTIONS

SEJAL BHALLA
Ph.D. Computer Science, University of Toronto

Computational Health and Interaction Lab
Chronic Obstructive Pulmonary Disease (COPD)

3rd leading cause of mortality

14% annual deaths globally

2M Canadians aged 35 and older living with COPD
DISEASE MANAGEMENT IS CRUCIAL!

• **Chronic condition**: regular respiratory monitoring and remote pulmonary rehabilitation delivery

• **Acute condition**: early detection of new exacerbations and ensuring adequate recovery

• Conventional approaches have included frequent lung function testing, both in the clinic and at home.
MOBILE HEALTH
RELEVANT CLINICAL INDICATORS

Vital Signs
Symptoms
Lung Function
A remote monitoring system should be convenient to use, assess respiratory health holistically, work in real-world settings, and support continuous monitoring and early detection of worsening.
WHAT CAN RESEARCHERS DO?

• Understand patients needs and behaviors
• Conduct studies to collect data in the wild
• Analyze and understand patterns in the data
• Evaluate efficacy and inform stakeholders

WHAT CAN POLICYMAKERS DO?

• Lay framework and guidelines for incorporating remote monitoring into clinical practice
• Enable access and education to technology for patients
PulmoListener: Continuous Acoustic Monitoring of Chronic Obstructive Pulmonary Disease in the Wild

• **Data:** continuous audio collected from a smartwatch

• **Ground Truth:** Symptom severity level calculated from the daily responses on the London COPD Cohort Symptom Questionnaire [3]
 - A symptom score greater than 3 indicates high severity.

• **Duration:** 164 ± 92 days
CAN WE DETECT COPD SEVERITY?

Patient Independent Results

Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>N = 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Mean ± SD)</td>
<td>66.4 ± 11.7</td>
</tr>
<tr>
<td>Women</td>
<td>3</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>White (8)</td>
</tr>
</tbody>
</table>

Sensitivity: 0.79 ± 0.03
Specificity: 0.83 ± 0.05
F1: 0.70 ± 0.03
CAN WE FORECAST COPD SEVERITY?

Marginal decrease in performance up to 4 days in advance.

Sensitivity: 0.75 ± 0.02
Specificity: 0.74 ± 0.07
F1: 0.62 ± 0.03
Association Between Wearable Sensor Data And Daily Lung Condition: A Prospective Cohort Study

- **Goal:** To holistically examine the interplay of different physiological signals towards determining the present and future lung condition.

- **Dataset:** Continuous speech, activity and heart rate data collected from a smartwatch worn by 20 patients over a period of 3 months.
POTENTIAL BENEFITS TO STAKEHOLDERS

Patients
• Self-tracking and aging in place
• Actively manage symptoms by avoiding triggers

Healthcare Providers
• Timely assistance leading to lower hospitalizations
• Less burden on clinical staff

Healthcare Institutions
• Lower costs due to less hospitalizations
FUTURE WORK

Multi-modal Sensing

• Multimodal learning algorithms

• Contextualize predictions using ambient sensor data

Prospective Cohort Study v2.0

• Evaluate on new dataset and improve generalizability

Design Considerations for Monitoring Systems

• Qualitative user studies

• Optimize information load for clinicians (remote monitoring) and patients (personal tracking)
QUESTIONS?

Sejal Bhalla
sejal@cs.toronto.edu
University of Toronto

Salaar Liaqat
University of Toronto

Andrea Gershon
Sunnybrook Health Sciences Centre

Robert Wu
University Health Network

Eyal de Lara
University of Toronto

Alex Mariakakis
University of Toronto